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Abstract 

We have developed a microfabricated flow-through impedance characterization 
system capable of performing AC, multi-frequency measurements on cells and other particles. 
The sensor measures both the resistive and reactive impedance of passing particles, at rates of 
up to 100 particles per second. Its operational bandwidth approaches 10 MHz with a signal- 
to-noise ratio of approximately 40 dB. Particle impedance is measured at three or more 
frequencies simultaneously, enabling the derivation of multiple particle parameters. This 
constitutes an improvement to the well-established technique of DC particle sizing via the 
Coulter Principle. Human peripheral blood granulocyte radius, membrane capacitance, and 
cytoplasmic conductivity were measured (r = 4.1 pm, C,,, = 0.9 pF/cm2, olnt = 0.66 S/m) 
and were found to be consistent with published values. 
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1. Introduction to Particle Impedance Characterization 

The Coulter counter, a commercial instrument which uses DC impedance (resistance) 
measurements to determine the volume of small particles in suspension, has existed for over 
40 years. Instruments that combine Coulter Principle and single high frequency impedance 
measurements to determine the cellular cytoplasmic conductivity are available for blood cell 
analysis. However, such two-parameter measurements are incapable of distinguishing 
between some particle subpopulations of interest (e.g. granulocytes and monocytes, or spores 
and background particles). What is desired for a host of hematology, pharmacology, forensic, 
and counter biological warfare applications is a system that can perform broad-band 
impedance characterizations of particles to enable superior particle differentiation via features 
i n  their impedance spectra. Recent research has shown that cellular parameters vary with such 
physiologic alterations as apoptosis, malarial infection, cell differentiation, and exposure to 
toxins. 

A method often employed for broad-band electrical characterization of particles is 
electrorotation (ROT), whereby a rotating electric field is used to generate a torque on a 
particle [ l ] .  The magnitude and direction of the torque, and the resulting particle rotation, 
depend on the particle’s dielectric properties. By measuring a particle’s rotation rate as a 
function of excitation frequency, its conductivity, membrane capacitance, membrane 
resistance, and other properties can be determined. Although the technique is precise, it 
requires significant measurement time; even automated ROT systems take several minutes 
per particle [2]. 



A faster approach uses a pulse-FFT measurement scheme [ 3 ] .  As particles pass 
through a sensor orifice, a broadband electrical impulse is used to excite them. The particle’s 
impedance signature is then generated using the Fast Fourier Transform (FFT) of the sensor’s 
impulse response. This technique produces a quasi-continuous measure of the particle’s 
impedance spectra, but since the energy of the excitation signal is spread across a band of 
frequencies, the signal-to-noise ratio (SNR) is inherently worse than in a discrete frequency 
system. 

Another approach involves the use of tuned oscillators to perform simultaneous 
impedance measurements at multiple, discrete frequencies which are chosen to capture the 
important transitions in the particle’s impedance spectra [4]. Since the system’s signal power 
is concentrated at the measurement frequencies, this technique produces a better signal to 
noise ratio than the pulse-FFT approach. However, changes in the operating frequencies or 
solution conductivity may cause the oscillator circuit to become de-tuned. Such a system is 
most useful for measurements involving predetermined particle types under specific operating 
conditions. 

2. System Architecture 

The system presented here combines the advantages of microfabrication technology 
(low cost, scalability, size) with a new circuit architecture and high-speed data processing to 
overcome the limitations of existing impedance characterization schemes. It consists of a 
microfabricated device (Fig. 1 ) with two identical microchannel sensors: one channel for 
sensing particles as they flow through the device and the other for use as an electrical 
reference. The microfluidic chip is mounted on a circuit board (Fig. 1) containing electronics 
that simultaneously measure resistive and reactive changes in the differential impedance of 
the microchannel sensors. The system operates at multiple, software programmable 
frequencies from 100 kHz to 10 MHz and can accommodate solution conductivities of 
between 50 and 250 mS/m. Unique packaging (Fig. 1)  allows the sensor, circuit board, and 
fluidic interconnects to be assembled easily and within a small footprint. 

Mircofabrication techniques enable the construction of specific sensor geometries 
which maximize the operational bandwidth by reducing the effects of the sensor’s parallel 
plate and double-layer capacitances. The microchannels are isotropically etched 20 pm into a 
glass substrate, and electrodeposited photoresist is used in a lift-off process to define 3D 
platinum electrodes in the channel bottoms [5]. The opposing electrodes are patterned onto a 
second glass substrate that is ultrasonically drilled to produce electrical and fluidic vias. 
These two glass plates are aligned and anodically bonded, sealing the electrodes inside the 
channels. The resulting active sensing region is approximately 70 pm wide and 70 pm long 
with 20 pm of separation between the electrodes. 

The system uses a homodyne circuit architecture which mixes the resistive and 
reactive components of particle impedance to DC for detection. It accommodates various 
operating conditions and measurement frequencies with a simple gain adjustment; the tuning 
of individual frequency channels is not required. Moreover, system and sensor-induced gain 
and phase shifts are easily normalized using polystyrene calibration beads. During testing, 
particles suspended in the carrier solution flow through the sense microchannel, while 
particle-free carrier solution flows through the reference channel. The sense and reference 
electrode sets are driven out of phase using a signal formed from a summation of the 
measurement frequencies. The currents through each electrode set are combined, amplified, 
mixed, filtered, digitized, and transferred to a computer for analysis. As particles enter the 
sensor region, the computer stores the maximum changes in the difference currents for the in- 



phase and quadrature-phase components at each frequency. These changes are proportional 
to the real and imaginary parts of the particle’s impedance, from which the desired parameters 
are derived. 

Figure 1: Detection electronics, device package, and the microfabricated sensor (left). 
Close-up of the sensor with both the sense and reference channels visible (center). A 
microscope view of the microfabricated channel and parallel plate sensor electrodes (right). 

The first system prototype uses discrete mixers, filters, and direct digital signal 
synthesis circuitry to measure complex impedance at three frequencies, and it achieves an 
SNR of approximately 40 dB. A mixed digital and analog application-specific integrated 
circuit (ASIC) that will expand the number of possible simultaneous measurement 
frequencies to eight and improve the SNR has been fabricated and is undergoing testing. 
Eight fiequencies will enable the use of more complex particle models and allow conclusions 
to be drawn about additional particle parameters, including cell membrane conductivity and 
internal permittivity (which reflects endoplasmic reticulum and nuclear structure). For both 
systems, the maximum measurement rate is limited by the analysis software to less than one 
hundred particles per second, but by incorporating the peak picking and filtering algorithms in 
hardware, measurement rates exceeding one thousand particles per second are readily 
attainable. 

3. Results and Discussion 

Initial device testing revealed differences in the measured and expected volume 
distributions of calibration beads. This discrepancy was attributed to the settling of beads in 
the microchannel; at low flow rates the beads fall from suspension and encounter the fringing 
field at the edge of the sensor electrode. For flow rates in excess of 1 ml/hr, hydrodynamic 
focusing positions the particles towards the channel’s center, away from the inhomogeneous 
field, and the measured particle sizes closely match the predicted distribution based on the 
manufacturer’s specifications (Fig. 2). 

Preliminary tests using human peripheral blood granulocytes in a 50 mS/m buffer 
solution are shown in Fig. 3 .  The mean radius of 4.1 pm, membrane capacitance of 0.9 
pF/cm2, and cytoplasmic conductivity of 0.66 S/m derived from impedance measurements 
compare favorably with accepted mean values from ROT experiments (r = 4.7 pm and C,,, = 

1.1 vF/cm2, qnt = 0.60 S/m) [6]. In addition, the system successfully measured the expected 
difference in cytoplasmic conductivity between paraformaldehyde fixed and unfixed 
granulocytes. 



4. Conclusion 

A system has been demonstrated that accurately measures resistive and reactive 
particle impedance in a flow-through system. Its wide bandwidth and easily adjustable 
operating frequencies enable characterizations of various particle types under different 
operating conditions. The volume, cytoplasmic conductivity, and membrane capacitance of 
human peripheral blood granulocytes were successfully measured. It is anticipated that this 
system will be capable of differentiating sub-populations of cells and biological particles that 
are indistinguishable with existing flow-through electrical particle characterization 
techniques. 

1.5- 
A 

"E 

OE 

2 1.0- 
LL 
3 
Y 

f 0.5- 

2.0, 

53 

z 
13 r. 

100 

-Predicted [I F, -3 Measured 

150 
0.0 &- 

0 I 
- 

2 3 4 5 

Volume (fl) Radius (wm) 

Figure 2: Predicted and measured volume 
distributions for calibration beads. 

Figure 3: Cellular parameters derived 
from preliminary measurements. 
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